石油科技论坛 ›› 2023, Vol. 42 ›› Issue (1): 61-66.DOI: 10.3969/j.issn.1002-302x.2023.01.009

• 技术前沿 • 上一篇    下一篇

基于数据分析的设备故障预警与诊断技术在燃气电厂的应用

何洪 阮航   

  1. 中海石油气电集团有限责任公司
  • 出版日期:2023-03-03 发布日期:2023-03-03
  • 作者简介:何洪,1990年生,2020年毕业于北京科技大学英语翻译专业,硕士,工程师,主要从事石油化工行业信息系统业务规划、方案设计等研究工作。
  • 基金资助:
    中海石油气电集团有限责任公司科研课题“智慧电厂智能生产优化技术”(编号:KJGG-2022-1607)。

Data Analysis-based Technology for Early-warning and Diagnosis of Equipment Failure Used in Gas-fired Power Plant

He Hong, Ruan Hang   

  1. CNOOC Gas & Power Group Co., Ltd., Beijing 100028, China
  • Online:2023-03-03 Published:2023-03-03

摘要: 大数据、人工智能、边缘计算等先进技术不断进步,在燃气电厂利用基于数据分析的设备故障预警与诊断模型辅助检维修的优势逐步显现。AI设备故障预警与诊断模型依托统一的云平台搭建,覆盖燃气电厂燃机、汽机、锅炉和电气系统等多类主辅机设备,利用大数据分析技术和人工智能算法,主要算法包括分段函数、多元回归、深度神经网络等。模型以燃气电厂各系统设备的实时和历史数据为基础,将业务关联较强的数据与电厂内部专家经验相结合,实现设备参数劣化预警。文章结合燃气电厂AI模型应用实例,对建模过程、输入输出参数设定、训练样本选择、预警信息及故障诊断等进行说明与分析。利用AI设备故障预警与诊断模型可实时监督机组设备运行情况,在设备出现异常或故障的早期阶段进行智能预警和诊断,为机组设备运行安全提供保障。

关键词: 燃气电厂, 故障预警与诊断, AI模型, 大数据, 人工智能

Abstract: Progress is continuously made in big data, artificial intelligence and edge computing. The advantages of using the data-based analysis model of early-warning and diagnosis of equipment failure for auxiliary maintenance are gradually appearing at the gas-fired power plant. The AI early-warning and diagnosis model for equipment failure depends on a unified cloud platform, which covers various kinds of main and auxiliary equipment in the systems of gas turbine, steam generator, boiler and electricity. Big data analysis technology and AI algorithm mainly include piecewise function, multiple regression and in-depth neural network. Based on the real-time and historical data of various systems and equipment at the gas-fired power plant, the model combines the business-related data with the experiences of experts inside the power plant to bring about early warning of deteriorating equipment parameters. Based on the application case of the AI model at the gas-fired power plant, this paper elaborates and analyzes the modelling process, design of the input and output parameters, selection of the training prototype, early-warning information and diagnosis of failures. The AI early warning and diagnosis model for equipment failure can be used to monitor operation of the units in real time and make warning and diagnosis at the early stage of equipment abnormality and failure, maintaining operational safety of the units.

中图分类号: