[1] 刘伟, 闫娜. 人工智能在石油工程领域应用及影响[J]. 石油
科技论坛,2018,37(4):32-40.
Liu Wei, Yan Na. Application and influence of artificial intelligence
in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32-40.
[2] 杨金华, 邱茂鑫. 郝红娜, 等. 智能化——油气工业发展大
趋势[J]. 石油科技论坛,2016,35(6):36-42.
Yang Jinhua, Qiu Maoxin, Hao Hongna, et al. Intelligence - Oil
and gas industrial development trend[J]. Oil Forum, 2016, 35(6):
36-42.
[3] 曲晓强, 肖贞雄. 低油价时期全球物探行业挑战与机遇[J].
石油科技论坛,2017,36(3):55-67.
Qu Xiaoqiang, Xiao Zhenxiong. Challenges and opportunities for
global geophysical prospecting industry during low oil price
period[J]. Oil Forum, 2017, 36(3): 55-59.
[4] 杨金华, 李晓光, 张焕芝, 等. 油气勘探开发工程新技术发展思考[J]. 国际石油经济,2018,26(8):1-8.
Yang Jinhua, Li Xiaoguang, Zhang Huanzhi, et al. Thinking on
the development of new technology in oil and gas E&D engineering[J].
International Petroleum Economics,2018,26(8):1-8.
[5] 李晓阳, 韩赢. 石油地质勘探技术的创新及其发展[J]. 中国
石油和化工标准与质量,2018(2):148-149.
Li Xiaoyang, Han Ying. Petroleum geological exploration
technological innovation and development[J]. China Petroleum and
Chemical Standard and Quality,2018,38(2):148-149.
[6] 郑寿春, 林萍, 宋其, 等. 试论我国石油产业的创新机制[J].
西南石油大学学报,2019,21(2):12-17.
Zheng Shouchun, Lin Ping, Song Qi, et al. Innovation mechanism of
China’s petroleum industry[J]. Journal of Southwest Petroleum
University (Social Sciences Edition),2019,21(2):12-17.
[7] Dekuan Chang, Wuyang Yang, Xueshan Yong, et al. Seismic
fault detection using deep learning technology[C]. SEG
International Geophysical Conference, 2018: 1770-1773.
[8] Guitton A. 3D convolutional neural networks for fault interpretation[C].
80th EAGE Conference and Exhibition 2018, 2018.
[9] Zhao T, Mukhopadhyay P. A fault detection workflow using deep
learning and image processing[C]. SEG Technical Program Expanded
Abstracts 2018. Society of Exploration Geophysicists, 2018:
1966-1970.
[10] Xing L, Aarre V, Theoharis T. Improving faults continuity for
extraction by transfer learning based on synthetic data[C]. SEG
Technical Program Expanded Abstracts 2018. Society of Exploration
Geophysicists, 2018: 1961-1965.
[11] Di H, Wang Z, AlRegib G. Seismic fault detection from post-stack
amplitude by convolutional neural networks[C]. 80th EAGE
Conference and Exhibition 2018,2018.
[12] Wu X, Shi Y, Fomel S, et al. Convolutional neural networks for
fault interpretation in seismic images[C]. SEG Technical Program
Expanded Abstracts 2018. Society of Exploration Geophysicists,
2018: 1946-1950.
[13] Zhao T, Li F, Marfurt K J. Constraining self-organizing map
facies analysis with stratigraphy: An approach to increase the
credibility in automatic seismic facies classification [J]. Interpretation,
2017, 5(2): 163-171.
[14] Duan Y, Zheng X, Hu L. Seismic facies analysis based on deep
encoder clustering[M]. SEG Technical Program Expanded Abstracts
2018. Society of Exploration Geophysicists, 2018: 2152-2156.
[15] Zhao T, Li F, Marfurt K. Automated input attribute weighting for
unsupervised seismic facies analysis[C]. SEG Technical Program
Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017:
2122-2126.
[16] Zhang P Y, Sun J M, Jiang Y J, et al. Deep learning method for
lithology identification from borehole images[C]. 79th EAGE
Conference and Exhibition 2017, 2017.
[17] Emelyanova I, Pervukhina M, Clennell M, et al. Unsupervised
identification of electrofacies employing machine learning[C].
79th EAGE Conference and Exhibition 2017-Workshops, 2017.
[18] Bestagini P, Lipari V, Tubaro S. A machine learning approach to
facies classification using well logs[M]. SEG Technical Program
Expanded Abstracts 2017. Society of Exploration Geophysicists,
2017: 2137-2142.
[19] Wu P Y, Jain V, Kulkarni M S, et al. Machine learning-based
method for automated well-log processing and interpretation[C].
SEG Technical Program Expanded Abstracts 2018. Society of
Exploration Geophysicists, 2018: 2041-2045.
[20] Haishan Li, Wuyang Yang and Xueshan Yong. Deep learning for
ground-roll noise attenuation. SEG International Exposition and
88th Annual Meeting, 2018:1981-1985.
[21] Chang D K, Yang W Y, Yong X S, Li H S. Generative adversarial
networks for seismic data interpolation [C]//SEG 2018 Workshop:
Reservoir Geophysics, Beijing, China, September, 2018. Society
of Exploration Geophysicists and the Chinese Geophysical Society,
2018: 52-54. |