[1] 蒋德鑫, 张厚和, 李春荣, 等. 全球深水-超深水油气勘探历程与发展趋势[J]. 海洋地质前沿, 2022, 38(10): 1-12.
Jiang Dexin, Zhang Houhe, Li Chunrong, et al. Global deep- and ultradeep-water oil and gas exploration: Review and outlook[J]. Marine Geology Frontiers, 2022, 38(10): 1-12.
[2] Wood Mackenzie. Upstream date tools[EB/OL]. [2024-05-29]. https://udt.woodmac.com/dv/.
[3] 陈希, 王作乾, 顾硕, 等. 全球深水油气开发特征、潜力分布及发展趋势[J].石油科技论坛, 2023, 42(6): 69-76.
Chen Xi, Wang Zuoqian, Gu Shuo, et al. Global deepwater oil and gas development characteristics, potential distribution and development trend[J]. Petroleum Science and Technology Forum, 2023, 42(6):69-76.
[4] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1): 1-34, 55.
Zhang Gongcheng, Qu Hongjun, Zhang Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J].Acta Petrolei Sinica, 2019, 40(1): 1-34, 55.
[5] 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J].中国工程科学, 2016, 18(2): 19-31.
Zhou Shouwei, Li Qingping, Zhu Haishan, et al. The current state and future of offshore energy exploration and development technology[J].Strategic Study of CAE, 2016, 18(2): 19-31.
[6] 谢玉洪, 张功成, 唐武, 等. 南海北部深水区油气成藏理论技术创新与勘探重大突破[J]. 天然气工业, 2020, 40(12): 1-11.
Xie Yuhong, Zhang Gongcheng, Tang Wu, et al. Theoretical and technological innovation of oil and gas accumulation and major exploration breakthroughs in deep-water areas, northern South China Sea[J]. Natural Gas Industry, 2020, 40(12): 1-11.
[7] 谢玉洪. 南海北部陆缘盆地深水区油气勘探新认识及攻关方向[J].天然气工业, 2024, 44(1): 13-25.
Xie Yuhong. New insights and future research focuses on oil and gas exploration in the continental margin deepwater area of the northern South China Sea[J]. Natural Gas Industry, 2024, 44(1): 13-25.
[8] 吴志强. 海洋宽频带地震勘探技术新进展[J]. 石油地球物理勘探,2014, 49(3): 421-430.
Wu Zhiqiang. New advances in marine broadband seismic exploration[J]. Oil Geophysical Prospecting, 2014, 49(3): 421-430.
[9] 王华忠.“ 两宽一高”油气地震勘探中的关键问题分析[J]. 石油物探,2019, 58(3): 313-324.
Wang Huazhong. Key problem analysis in seismic exploration based on wide-azimuth, high-density, and broadband seismic data[J].Geophysical Prospecting for Petroleum, 2019, 58(3): 313-324.
[10] 叶云飞, 孙文博, 黄饶. 中国海洋宽频地震勘探技术现状、应用案例与发展方向[J]. 石油学报, 2023, 44(12): 2286-2296.
Ye Yunfei, Sun Wenbo, Huang Rao. Current status, application cases and development direction of marine broadband seismic exploration technology in China[J]. Acta Petrolei Sinica, 2023, 44(12): 2286-2296.
[11] 谢玉洪, 李列, 袁全社. 海上宽频地震勘探技术在琼东南盆地深水区的应用[J]. 石油地球物理勘探, 2012, 47(3): 430-435.
Xie Yuhong, Li Lie, Yuan Quanshe. Broadband marine seismic exploration in Qiongdongnan Basin[J]. Oil Geophysical Prospecting,2012, 47(3): 430-435.
[12] 杨鹏, 夏斌, 蔡周荣, 等. 南海北部莺歌海盆地成因机制: 与渭河盆地构造对比分析的启示[J]. 海洋地质与第四纪地质, 2017, 37(6):65-75.
Yang Peng, Xia Bin, Cai Zhourong, et al. Genetic mechanism of the Yinggehai Basin, Northern South China Sea: A comparative study to the Weihe Basin[J]. Marine Geology & Quaternary Geology, 2017,37(6): 65-75.
[13] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3): 58-65.
Mi Lijun, Zhou Shouwei, Xie Yuhong, et al. Deep-water oil and gas exploration in Northern South China Sea: Progress and outlook[J].Strategic Study of CAE, 2022, 24(3): 58-65.
[14] 汪新光, 张辉, 陈之贺, 等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53.
Wang Xinguang, Zhang Hui, Chen Zhihe, et al. Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology,2021, 40(5): 42-53.
[15] 谢彬, 曾恒一. 我国海洋深水油气田开发工程技术研究进展[J]. 中国海上油气, 2021, 33(1): 166-176.
Xie Bin, Zeng Hengyi. Research advancement in offshore deepwater oil and gas development engineering technologies in China[J]. China Offshore Oil and Gas, 2021, 33(1): 166-176.
[16] 王春生, 陈国龙, 石云, 等. 南海流花深水油田群开发工程方案研究[J]. 中国海上油气, 2020, 32(3): 143-151.
Wang Chunsheng, Chen Guolong, Shi Yun, et al. Engineering plans study on the development of Liuhua deep water oilfields in the South China Sea[J]. China Offshore Oil and Gas, 2020, 32(3): 143-151.
[17] 尹汉军, 付殿福. 300 米级深水导管架在南海陆坡区应用的挑战与关键技术研究[J]. 中国海上油气, 2022, 34(1): 147-154.
Yin Hanjun, Fu Dianfu. Challenges and key technology research on the application of 300-meter deep-water jacket in the South China Sea continental slope[J]. China Offshore Oil and Gas, 2022, 34(1):147-154.
[18] 朱海山, 李达, 魏澈, 等. 南海陵水17-2 深水气田开发工程方案研究[J]. 中国海上油气, 2018, 30(4): 170-177.
Zhu Haishan, Li Da, Wei Che, et al. Research on LS17-2 deep water gas field development engineering scenario in South China Sea[J].China Offshore Oil and Gas, 2018, 30(4): 170-177.
[19] 马强, 孙钦, 安维峥, 等. 深水水下不停产在役清管技术研究[J]. 海洋工程装备与技术, 2022, 9(3): 55-58.
Ma Qiang, Sun Qin, An Weizheng, et al. In-service subsea underwater pigging technology without stopping production[J]. Ocean Engineering Equipment and Technology, 2022, 9(3): 55-58.
[20] 李达, 易丛, 白雪平, 等. 陵水17-2 气田“深海一号”能源站立柱储油关键技术[J]. 中国海上油气, 2021, 33(3): 170-179.
Li Da, Yi Cong, Bai Xueping, et al. Key technologies of oil storage by using column in “Deep Sea No.1” energy station in LS17-2 gas field[J]. China Offshore Oil and Gas, 2021, 33(3): 170-179.
[21] 李达, 白雪平, 张婧文, 等. 圆筒型FPSO 总体设计方案与关键技术:以“海洋石油122”为例[J]. 中国海上油气, 2023, 35(2): 184-194.
Li Da, Bai Xueping, Zhang Jingwen, et al. Overall design scheme and key technologies of cylindrical FPSO: Taking “HYSY122” as an example[J]. China Offshore Oil and Gas, 2023, 35(2): 184-194.
[22] 安维峥, 郭鸿飞, 马强, 等. 水下管汇模块化设计方法及应用[J]. 中国海上油气, 2022, 34(5): 215-220.
An Weizheng, Guo Hongfei, Ma Qiang, et al. Modular design method and application of subsea manifold[J]. China Offshore Oil and Gas,2022, 34(5): 215-220. |