[1] Taherkhani A, Belatreche A, Li Y H, et al. A review of learning in biologically plausible spiking neural networks[J]. Neural Networks, 2020, 122: 253-272.
[2] Illing B, Gerstner W, Brea J. Biologically plausible deep learning — But how far can we go with shallow networks[J]. Neural Networks, 2019, 118: 90-101.
[3] Wülfing J M, Kumar S S, Boedecker J, et al. Adaptive long-term control of biological neural networks with Deep Reinforcement Learning[J]. Neurocomputing, 2019, 342: 66-74.
[4] Liu Z, Bai C C, Yu H, et al. An adaptive deep learning model to differentiate syndromes of infectious fever in smart medicine[J]. Future Generation Computer Systems, 2019, 111(3): 853-858.
[5] Liu Z, Yao C H, Yu H, Wu T H. Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things[J]. Future Generation Computer Systems, 2019, 97(Aug.): 1-9.
[6] Issa N T, Stathias V, Stephan S, et al. Machine and deep learning approaches for cancer drug repurposing[J]. Seminars in Cancer Biology, 2021.
[7] Ferraga M A, Maglaras L A, Moschoyiannis S, et al. Deep learning for cyber security intrusion detection: Approaches, datasets,and comparative study[J]. Journal of Information Security and Applications, 2020, 50: 1-19.
[8] Ertam F. An efficient hybrid deep learning approach for internet security[J]. Physica A, 2019, 535: 1-11.
[9] Amanullah M A, Habeeb R A A, Nasaruddin F H, et al. Deep learning and big data technologies for IoT security[J]. Computer Communications, 2010, 151: 495-517.
[10] Chaabani H, Wergh N, Kamoun F, et al. Estimating meteorological visibility range under foggy weather conditions: A deep learning approach[J]. Science Direct, 2018, 141: 478-483.
[11] Lundervold A S, Lundervold A. An overview of deep learning in medical imaging focusing on MRI[J]. Zeitschrift für Medizinische Physik, 2019, 29(2): 102-127.
[12] Liu Y, Wu L. High performance geological disaster recognition using deep learning[J]. The International Academy of Information Technology and Quantitative Management, 2018, 139: 529-536.
[13] Affonso C, Rossi A L D, Vieira F H A, et al. Deep learning for biological image classification[J]. Expert Systems With Applications, 2017, 85: 114-122.
[14] Wang H Z, Lei Z X, Zhang X, et al. A review of deep learning for renewable energy forecasting[J]. Energy Conversion and Management, 2019, 198: 1-16.
[15] 吉菁菁. “双碳”目标下,人工智能发展的应对策略[N]. 北京科技报, 2023-02-13(7).
Ji Jingjing. Countermeasures for AI development under the goal of “carbon peak and carbon neutrality”[N]. Beijing Sci-Tech Report, 2023-02-13(7).
[16] Zhou T, Ding C, Lin S, et al. Learning oracle attention for high-fidelity face completion[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020.
[17] 王哲峰, 高娜, 曾蕊, 等. 基于深度学习模型的测井电成像空白条带充填方法[J]. 测井技术, 2019, 43(6): 578-582.
Wang Zhefeng, Gao Na, Zeng Rui, et al. A gaps filling method for electrical logging images based on a deep learning model[J]. Well Logging Technology, 2019, 43(6): 578-582.
[18] Lahiri A, Jain A K, Agrawal S, et al. Prior guided GAN based semantic inpainting[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020.
[19] 罗歆, 闫建平, 王敏, 等. FMI测井图像井壁复原方法优化及应用[J]. 测井技术, 2021, 45(4): 386-393.
Luo Xin, Yan Jianping, Wang Min, et al. Optimization and application of borehole wall restoration method of FMI logging image[J]. Well Logging Technology, 2021, 45(4): 386-393.
[20] 杨午阳, 魏新建, 何欣. 应用地球物理+AI的智能化物探技术发展策略[J]. 石油科技论坛, 2019, 38(5): 40-47.
Yang Wuyang, Wei Xinjian, He Xin. Development plan for intelligent geophysical prospecting technology of applied geophysical+AI[J]. Oil Forum, 2019, 38(5): 40-47.
[21] Ma Y, Cao S, Rector J W, et al. Automatic first arrival picking for borehole seismic data using a pixel-level network[C]. San Antonio: 2019 SEG Annual Meeting, 2019.
[22] Phan S, Sen M. Deep learning with cross-shape deep Boltzmann machine for pre-stack inversion problem[C]. San Antonio: 2019 SEG Annual Meeting, 2019.
[23] Wu X, Lian L, Shi Y, et al. Deep learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge preserving, and slope estimation by using a single convolutional neural network[C]. San Antonio: 2019 SEG Annual Meeting, 2019.
[24] 张彦龙, 葛云华, 张晓林, 等. 钻完井工程技术人工智能专家系统初探[C]//西安石油大学, 陕西省石油学会. 2019油气田勘探与开发国际会议论文集, 2019.
Zhang Yanlong, Ge Yunhua, Zhang Xiaolin, et al. Initial study of AI expert system for drilling and completion engineering technology[C]//Xi’an Shiyou University, Shaanxi Petroleum Society. Collection of papers from 2019 International Field Exploration and Development Conference, 2019.
[25] 王志刚, 王稳石, 张立烨, 等. 万米科学超深井钻完井现状与展望[J]. 科技导报, 2022, 40(13): 27-35.
Wang Zhigang, Wang Wenshi, Zhang Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27-35.
[26] 何军, 叶明涛, 许彦明, 等. 基于云平台架构的钻完井远程管控支持中心建设[J]. 自动化应用, 2023, 64(10): 24-26, 29.
He Jun, Ye Mingtao, Xu Yanming, et al. Construction of remote control support center for drilling and completion based on cloud platform architecture[J]. Automation Application, 2023, 64(10): 24-26, 29.
[27] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺, 2020, 42(5): 527-542.
Su Yinao, Lu Baoping, Liu Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527-542.
[28] 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154.
Zou Caineng, Ding Yunhong, Lu Yongjun. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[29] 张凯, 赵兴刚, 张黎明, 等. 智能油田开发中的大数据及智能优化理论和方法研究现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 28-38.
Zhang Kai, Zhao Xinggang, Zhang Liming, et al. Current status and prospect for the research and application of big data and intelligent optimization methods in oilfield development[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 28-38.
[30] 贾虎, 邓力珲. 基于流线聚类人工智能方法的水驱油藏流场识别[J]. 石油勘探与开发, 2018, 45(2): 312-319.
Jia Hu, Deng Lihui. Oil reservoir water flooding flowing area identification based on the method of streamline clustering artificial intelligence[J]. Petroleum Exploration and Development, 2018, 45(2): 312-319.
[31] 李道伦, 刘旭亮, 查文舒, 等. 基于卷积神经网络的径向复合油藏自动试井解释方法[J]. 石油勘探与开发, 2020, 47(3): 1-9.
Li Daolun, Liu Xuliang, Cha Wenshu, et al. Automatic well test interpretation based on convolutional neural network for a radial composite reservoir[J]. Petroleum Exploration and Development, 2020, 47(3): 1-9.
[32] Tariq Z, Mahmoud M, Abdulraheem A. An artificial intelligence approach to predict the water saturation in carbonate reservoir rocks[C]. SPE Annual Technical Conference and Exhibition, 2019.
[33] 惠春琳. 能源数字化: 重塑全球能源发展态势[N]. 学习时报, 2019-06-21(2).
Hui Chunlin. Energy digitalization: Re-shape global energy development[N]. Study Times, 2019-06-21(2).
[34] 陈欣菲, 王大为, 李月华. 燃气产业与数字经济应用融合的边界条件及路径研究[J]. 经济研究导刊, 2021(22):40-43, 56.
Chen Xinfei, Wang Dawei, Li Yuehua. Research on boundary conditions and paths of the integration of gas industry and digital economy applications[J]. Economig Research Guide, 2021(22):40-43, 56.
[35] 李月清. 非常规为油气增产提供接续资源[J]. 中国石油企业, 2023(4): 46-47.
Li Yueqing. Provide substitute resources for increase of unconventional oil and gas production[N]. China Petroleum Enterprise, 2023(4): 46-47.
[36] 王作乾, 范子菲, 张兴阳, 等. 2021年全球油气开发现状、形势及启示[J]. 石油勘探与开发, 2022, 49(5): 1045-1060.
Wang Zuoqian, Fan Zifei, Zhang Xingyang, et al. Status, trends and enlightenment of global oil and gas development in 2021[J]. Petroleum Exploration and Development, 2022, 49(5): 1045-1060.
[37] 杨金华, 张焕芝. 非常规、深层、海洋油气勘探开发技术展望[J]. 世界石油工业, 2020, 27(6): 20-26.
Yang Jinhua, Zhang Huanzhi. Outlook on the exploration and development technologies of unconventional, deep and offshore oil and gas[J]. World Petroleum Industry, 2020, 27(6): 20-26.
[38] 黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238.
Huang Zhongwei, Li Guofu, Yang Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238.
[39] 渠沛然. 油气行业如何用好人工智能“利器”?[N]. 中国能源报, 2023-04-03(11).
Qu Peiran. How to make good use of AI “edge tool” for oil and gas industry[N]. China Energy News, 2023-04-03(11).
[40] 徐文伟, 肖立志, 刘合. 我国企业人工智能应用现状与挑战[J]. 中国工程科学, 2022, 24(6): 173-183.
Xu Wenwei, Xiao Lizhi, Liu He. Industrial application of artificial intelligence in China: Current status and challenges[J]. Strategic Study of CAE, 2022, 24(6): 173-183. |