[1] 邱国宾. 油田测井车的发展[J]. 中国石油和化工标准与质量, 2012, 33(15): 251.
Qiu Guobin. Development of logging truck in oil field[J]. China Petroleum and Chemical Standard and Quality, 2012, 33 (15): 251.
[2] 范国华, 张庆禄, 张宇翔. 测井企业移动放射源在线监控系统需求分析[J]. 科技创新与应用, 2020(34): 49-50.
Fan Guohua, Zhang Qinglu, Zhang Yuxiang. Requirement analysis of on-line monitoring system for mobile radioactive sources in logging enterprises[J]. Technology Innovation and Application, 2020(34): 49-50.
[3] 丁伟. 石油测井车井上监测系统的设计与实现[J]. 石油天然气学报, 2012, 34(6): 100-103.
Ding Wei. Design and implementation of monitoring system on logging truck[J]. Journal of Oil and Gas Technology, 2012, 34 (6): 100-103.
[4] 石玉江, 刘国强, 钟吉彬, 等. 基于大数据的测井智能解释系统开发与应用[J]. 中国石油勘探, 2021, 26(2): 113-126.
Shi Yujiang, Liu Guoqiang, Zhong Jibin, et al. Development and application of intelligent logging interpretation system based on big data[J]. China Petroleum Exploration, 2021, 26(2): 113-126.
[5] Lei Y, Dragan D. Diagnosis of intermittent connections for devicenet[J]. Chinese Journal of Mechanical Engineering, 2010, 23(5): 606-612.
[6] 王海瑛, 徐明, 宋奎博. 列控(CTCS3.300T)车载设备常见故障及处理[J]. 铁道通信信号, 2013, 49(9): 34-36.
Wang Haiying, Xu Ming, Song Kuibo. Common failures of CTCS3-300T on-board ATC equipment and their processing[J]. Railway Signalling & Communication, 2013, 49 (9): 34-36.
[7] 文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299.
Wen Chenglin, Lv Feiya, Bao Zhejing, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42 (9): 1285-1299.
[8] 陈静, 蒋正凯, 付敬奇. 基于Netica的自学习贝叶斯网络的构建[J]. 电子测量与仪器学报, 2016,30(11): 1687-1693.
Chen Jing, Jiang Zhengkai, Fu Jingqi. Construction of self-learning Bayesian network based on Netica[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30 (11): 1687-1693.
[9] 张振海, 王晓明, 党建武, 等. 基于专家知识融合的贝叶斯网络结构学习方法[J]. 计算机工程与应用, 2014(2): 1-4, 9.
Zhang Zhenhai, Wang Xiaoming, Dang Jianwu, et al. Bayesian network structure learning method based on expert knowledge fusion[J]. Computer Engineering and Applications, 2014(2): 1-4, 9.
[10] 沐守宽, 周伟. 缺失数据处理的期望-极大化算法与马尔可夫蒙特卡洛方法[J]. 心理科学进展, 2011,19(7): 1083-1090.
Mu Shoukuan, Zhou Wei. Handling missing data: Expectation-maximization algorithm and Markov Chain Monte Carlo algorithm[J]. Advances in Psychological Science, 2011, 19(7): 1083-1090.
[11] Pawlakb Z. Rough set approach to knowledge-based decision support[J]. European Journal of Operational Research, 1995, 99(1): 48-57.
[12] 李玉兰. 基于贝叶斯网络的列控车载设备故障诊断研究[D]. 北京: 北京交通大学, 2016.
Li Yulan. Research on fault diagnosis for on-board equipment of train control system based on Bayesian network[D]. Beijing: Beijing Jiaotong University, 2016.
[13] Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4): 309-347.
[14] Renooij S, Witteman C. Talking probabilities: Communicating probabilistic information with words and numbers[J]. International Journal of Approximate Reasoning, 1999, 22(3): 169-194.
[15] 赵阳, 徐田华, 周玉平, 等. 基于贝叶斯网络的高铁信号系统车载设备故障诊断方法的研究[J]. 铁道学报, 2014, 36(11): 48-53.
Zhao Yang, Xu Tianhua, Zhou Yuping, et al. Bayesian network based fault diagnosis system for vehicle on-board equipment of high-speed railway[J]. Journal of the China Railway Society, 2014, 36 (11): 48-53. |