[1] 王同良. 油气行业数字化转型实践与思考[J]. 石油科技论坛, 2020, 39(1): 29-33.
Wang Tongliang. Practice and thinking of oil and gas industrial digitalization transformation[J]. Petroleum Science and Technology Forum, 2020, 39(1): 29-33.
[2] 赵改善. 石油物探智能化发展之路: 从自动化到智能化[J]. 石油物探, 2019, 58(6): 791-810.
Zhao Gaishan. Road to intelligent petroleum geophysical exploration: From automatic to intelligent[J]. Geophysical Prospecting for Petroleum, 2019, 58(6): 791-810.
[3] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804.
Yu Kai, Jia Lei, Chen Yuqiang, et al. Deep learning: Yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
[4] 杨剑锋. 打造科技创新引擎 助力“数字中国石油”建设[J]. 石油科技论坛, 2021, 40(6): 20-24.
Yang Jianfeng. Become technological innovation engine; help construction of “digital CNPC”[J]. Petroleum Science and Technology Forum, 2021, 40(6): 20-24.
[5] 杨剑锋, 杜金虎, 杨勇, 等. 油气行业数字化转型研究与实践[J]. 石油学报, 2021, 42(2): 248-258.
Yang Jianfeng, Du Jinhu, Yang Yong, et al. Research and practice on digital transformation of the oil and gas industry[J]. Acta Petrolei Sinica, 2021, 42(2): 248-258.
[6] IDC. IDC FutureScape: 全球油气行业2023年预测——中国启示[EB/OL]. [2023-05-20]. https://www.idc.com/getdoc.jsp?containerId= CHC50036823.
IDC. IDC FutureScape: Global oil and gas forecast for 2023--Inspiration from China[EB/OL]. [2023-05-20]. https://www.idc.com/getdoc.jsp?containerId=CHC50036823.
[7] 李根生, 宋先知, 田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1-8.
Li Gensheng, Song Xianzhi, Tian Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1-8.
[8] 光新军, 王敏生, 耿黎东, 等. 人工智能技术发展对石油工程领域的影响及建议[J]. 石油科技论坛, 2020, 39(5): 41-47.
Guang Xinjun, Wang Minsheng, Geng Lidong, et al. Influence of artificial intelligence technological development on petroleum engineering and suggestions[J]. Petroleum Science and Technology Forum, 2020, 39(5): 41-47.
[9] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
Kuang Lichun, Liu He, Ren Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.
[10] 李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报 (自然科学版), 2020, 44(4): 1-11.
Li Yang, Lian Peiqing, Xue Zhaojie, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 1-11.
[11] 窦宏恩, 张蕾, 米兰, 等. 人工智能在全球油气工业领域的应用现状与前景展望[J]. 石油钻采工艺, 2021, 43(4): 405-419, 441.
Dou Hongen, Zhang Lei, Mi Lan, et al. The application status and prospect of artificial intelligence in the global oil and gas industry[J]. Oil Drilling & Production Technology, 2021, 43(4): 405-419, 441.
[12] 林伯韬, 郭建成. 人工智能在石油工业中的应用现状探讨[J]. 石油科学通报, 2019, 4(4): 403-413.
Lin Botao, Guo Jiancheng. Discussion on current application of artificial intelligence in petroleum industry[J]. Petroleum Science Bulletin, 2019, 4(4): 403-413.
[13] 陈溯, 安鹏, 吴刚, 等. 海上智能油田建设研究[J]. 石油科技论坛, 2020, 39(5): 16-23.
Chen Su, An Peng, Wu Gang, et al. Research on offshore intelligent oilfield construction[J]. Petroleum Science and Technology Forum, 2020, 39(5): 16-23.
[14] 李剑峰, 肖波, 肖莉, 等. 智能油田[M]. 北京: 中国石化出版社, 2020.
Li Jianfeng, Xiao Bo, Xiao Li, et al. Intelligent oilfield[M]. Beijing: China Petrochemical Press, 2020.
[15] 石玉江, 刘国强, 钟吉彬,等. 基于大数据的测井智能解释系统开发与应用[J]. 中国石油勘探, 2021, 26(2): 113-126.
Shi Yujiang, Liu Guoqiang, Zhong Jibin, et al. Development and application of intelligent logging interpretation system based on big data[J]. China Petroleum Exploration, 2021, 26(2): 113-126. |