[1] Zhao Wayne Xin, Zhou Kun, Li Junyi, et al. A survey of large language models[EB/OL]. [2024-06-12]. https://arxiv.org/abs/2303.18223v15.
[2] Lewis P, Perez E, Piktus A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[EB/OL]. [2024-06-12]. https://arxiv.org/abs/2005.11401?file=2005.11401.
[3] Gao Yunfan, et al. Retrieval-augmented generation for large language models: A survey[EB/OL]. [2024-06-12]. https://arxiv. org/abs/2312.10997.
[4] 赵鑫, 窦志成, 文继荣. 大语言模型时代下的信息检索研究发展趋势[J]. 中国科学基金, 2023, 37(5): 786-792.
Zhao Xin, Dou Zhicheng, Wen Jirong. The development of information retrieval in the era of large language model[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(5): 786-792.
[5] 车万翔, 窦志成, 冯岩松, 等. 大模型时代的自然语言处理: 挑战、机遇与发展[J]. 中国科学(信息科学), 2023, 53(9): 1645-1687.
Che Wanxiang, Dou Zhicheng, Feng Yansong, et al. Towards a comprehensive understanding of the impact of large language models on natural language processing: Challenges, opportunities and future directions[J]. Science in China (Information Sciences), 2023, 53(9):1645-1687.
[6] Yikun Han, Chunjiang Liu, Pengfei Wang. A comprehensive survey on vector database: Storage and retrieval technique, challenge[EB/OL].[2024-06-12]. https://arxiv.org/abs/2310.11703.
[7] 张浩. 基于向量数据库的智能媒资搜索研究[J]. 电声技术, 2022, 46(1): 22-24, 28.
Zhang Hao. Research on intelligent media resources search based on vector database[J]. Audio Engineering, 2022, 46(1): 22-24, 28.
[8] Ji Shaoxiong, Pan Shirui, Erik Cambria, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514.
[9] 刘世侠, 李卫军, 刘雪洋, 等. 基于强化学习的知识图谱推理研究综述[J]. 计算机应用研究, 2024, 41(9): 2561-2572.
Liu Shixia, Li Weijun, Liu Xueyang, et al. Review of reinforcement learning based knowledge graph reasoning research[J]. Application Research of Computers, 2024, 41(9): 2561-2572.
[10] Pan Shirui, Luo Linhao, Wang Yufei, et al. Unifying large language models and knowledge graphs: A roadmap[EB/OL]. [2024-06-12].https://arxiv.org/pdf/2306.08302v1.
[11] 唐晓晟, 程琳雅, 张春红, 等. 大语言模型在学科知识图谱自动化构建上的应用[J]. 北京邮电大学学报( 社会科学版), 2024, 26(1):125-136.
Tang Xiaosheng, Cheng Linya, Zhang Chunhong, et al. Application of large language models in automated construction of knowledge graphsfor university subject domains[J]. Journal of Beijing University of Posts and Telecommunications (Social Sciences Edition), 2024, 26(1):125-136.
[12] 余燕芳, 夏亮亮, 李翼鸿, 等. 基于知识图谱和大语言模型的终身学习资源库供给生态构建研究[J]. 远程教育杂志, 2024, 42(1): 104-112.
Yu Yanfang, Xia Liangliang, Li Jihong, et al. Research on the supply ecology of lifelong learning resource database based on knowledge graph and large language model[J]. Journal of Distance Education,2024, 42(1): 104-112.
[13] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1-11.
Wang Zhiyue, Yu Qing, Wang Nan, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer Engineering and Applications, 2020, 56(23): 1-11.
[14] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6):16-29.
Wen Sen, Qian Li, Hu Maodi, et al. Review of research progress on question-answering techniques based on large Language models[J].Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29.
[15] 官璐, 何康, 斗维红. 微调大模型: 个性化人机信息交互模式分析[J].新闻界, 2023(11): 44-51, 76.
Guan Lu, He Kang, Dou Weihong. Fine-tuning large language models:The analysis of personalized human-computer information interaction patterns[J]. Journalism and Mass Communication, 2023(11): 44-51, 76.
[16] 孙维纬. 知识检索增强的对话系统研究[D]. 济南: 山东大学, 2023.Sun Weiwei. Research on knowledge retrieval augmented dialogue systems[D]. Jinan: Shandong University, 2023.
[17] Cui Jiaxi, Ning Munan, Li Zongjian, et al. Chatlaw: A multi-agent collaborative legal assistant with knowledge graph enhanced mixtureof-experts large language model[EB/OL]. [2024-06-12]. https://arxiv.org/pdf/2306.16092.
[18] Xu Zhentao, Cruz M J, Guevara M, et al. Retrieval-augmented generation with knowledge graphs for customer service question answering[EB/OL]. [2024-06-12]. https://arxiv.org/abs/2404.17723.
[19] Darren Edge, Ha Trinh, Newman Cheng, et al. From local to global: A graph RAG approach to query-focused summarization[EB/OL]. [2024-06-12]. https://arxiv.org/abs/2404.16130.
[20] Jiang Xinke, Zhang Ruizhe, Xu Yongxin, et al. HyKGE: A hypothesis knowledge graph enhanced framework for accurate and reliable medical LLMs responses[EB/OL]. [2024-06-12]. https://arxiv. org/abs/2312.15883.
[21] Gutiérrez B J, Shu Yiheng , Gu Yu, et al. HippoRAG: Neurobiologically inspired long-term memory for large language models[EB/OL]. [2024-06-12]. https://arxiv.org/pdf/2405.14831. |