[1] 刘合, 任义丽, 李欣, 等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发, 2024, 51(4): 910-923.
Liu He, Ren Yili, Li Xin, et al. Research status and application of artificial intelligence large models in the oil and gas industry[J].Petroleum Exploration and Development, 2024, 51(4): 910-923.
[2] 刘合. 油气勘探开发数字化转型 人工智能应用大势所趋[J]. 石油科技论坛, 2023, 42(3): 1-9.
Liu He. Digital transformation of oil and gas exploration and development; unstoppable artificial intelligence application[J].Petroleum Science and Technology Forum, 2023, 42(3): 1-9.
[3] 葛文臣. 非常规油气资源勘探技术的发展与应用[J]. 石油石化物资采购, 2023(22): 91-93.
Ge Wenchen. Development and application of exploration technology for unconventional oil and gas resources [J]. Petroleum & Petrochemical Material Procurement, 2023(22): 91-93.
[4] Eckroth J, Gipson M, Boden J, et al. Answering natural language questions with OpenAI’s GPT in the petroleum industry[EB/OL].[2024-12-01]. https://dx. doi. org/10.2118/214888-MS. DOI: 10.2118/214888-MS.
[5] Rodrigues R B M, Privatto P I M, De Sousa G J, et al. PetroBERT: A domain adaptation language model for oil and gas applications in portuguese[C]//Pinheiro V, Gamallo P, Amaro R, et al. Computational processing of the portuguese language. Cham: Springer International Publishing, 2022: 101-109.
[6] Abijith P Y, Patidar P, Nair G, et al. Large language models trained on equipment maintenance text[EB/OL]. [2024-12-01]. https://dx.doi.org/10.2118/216336-MS.
[7] Lokhande A, Pillai P, Mangsuli P. Enabling contextual natural language search on oil and gas databases[EB/OL]. [2024-12-01]. https://dx. doi.org/10.2118/216349-MS.
[8] Yi M, Ceglinski K, Ashok P, et al. Applications of large language models in well construction planning and real-time operation[EB/OL].[2024-12-01]. https://dx.doi.org/10.2118/217700-MS.
[9] Saboo S, Shekhawat D. Enhancing predictive maintenance in an oil & gas refinery using IoT, AI & ML: An generative AI solution[EB/OL].[2024-12-01]. https://dx.doi.org/10.2523/IPTC-23466-MS.
[10] Anonymous. ENERGYai at ADNOC[EB/OL]. [2024-12-01]. https://www.adnoc.ae/en/energy-ai.
[11] 杨明澔, 李小波, 曾倩, 等. 大语言模型在油气上游业务落地的技术实践[J]. 信息系统工程, 2024(6): 61-65.
Yang Minghao, Li Xiaobo, Zeng Qian, et al. Practice of large language model technology in oil and gas upstream sector [J]. China CIO News,2024(6): 61-65.
[12] Ogundare O, Madasu S, Wiggins N. Industrial engineering with large language models: A case study of ChatGPT’s performance on oil & gas problems[EB/OL]. [2024-12-01]. https://ieeexplore. ieee. org/document/10374622.
[13] Marlot M, Srivastava D N, Wong F K, et al. Unsupervised multitask learning for oil and gas language models with limited resources[EB/OL]. [2024-12-01]. https://dx.doi.org/10.2118/216402-MS.
[14] Kumar P, Kathuria S. Large language models (LLMs) for natural language processing (NLP) of oil and gas drilling data[C/OL]. [2024-12-01]. https://onepetro. org/SPEATCE/proceedings/23ATCE/2-23ATCE/D021S012R004/535656.
[15] Singh A, Jia T, Nalagatla V. Generative AI enabled conversational chatbot for drilling and production analytics[EB/OL]. [2024-10-29]. https://dx.doi.org/10.2118/216267-MS.
[16] Duff M. SLB launches AI-powered Lumi platform[EB/OL]. (2024-09-17) [2024-12-01]. https://www. slb. com/zh-cn/news-and-insights/newsroom/press-release/2024/slb-launches-ai-powered-lumi-platform.
[17] Tveritnev A, Khanji M, Abdullah S, et al. Applying machine learning NLP algorithm for reconciliation geology and petrophysics in rock typing[EB/OL]. [2024-10-29]. https://dx.doi.org/10.2118/216223-MS.
[18] Sheng H, Wu X, Si X, et al. Seismic foundation model (SFM): A new generation deep learning model in geophysics[EB/OL]. (2023-12-15)[2024-12-01]. http://arxiv.org/abs/2309.02791.
[19] Liu Q, Chen Z, Ma J. Foundation models for exploration geophysics [EB/OL]. (2024-12-10)[2024-12-01]. http://arxiv.org/abs/2406.03163.
[20] Liua H, Ren Y L, Li X, et al. Rock thin-section analysis and identification based on artificial intelligent technique[J]. Petroleum Science, 2022, 19(4): 1605-1621.
[21] Zheng Q, Zhang D. RockGPT: Reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning[J].Computational Geosciences, 2022, 26(3): 677-696.
[22] Zhang Z, Tang J, Fan B, et al. An intelligent lithology recognition system for continental shale by using digital coring images and convolutional neural networks[J]. Geoenergy Science and Engineering,2024, 239: 212909.
[23] Ma Z, He X, Sun S, et al. Zero-shot digital rock image segmentation with a fine-tuned segment anything model[EB/OL]. (2023-11-17)[2024-12-01]. http://arxiv.org/abs/2311.10865.
[24] Wu W, Wong M S, Yu X, et al. Compositional oil spill detection based on object detector and adapted segment anything model from sar images[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21:1-5.
[25] Liu S, Chen J, He B G, et al. Adapting segment anything model for shield tunnel water leakage segmentation[EB/OL] [2024-12-11]. https://dl.acm.org/doi/10.1145/3606042.3616453.
[26] Ura A, Minervini P, Fourrier C. The open medical-LLM leaderboard: Benchmarking large language models in healthcare[EB/OL]. [2024-09-30]. https://huggingface.co/blog/leaderboard-medicalllm.
[27] Sheng He, Rina Bao, Jingpeng Li, et al. Accuracy of segment-anything model (SAM) in medical image segmentation tasks[Z](2023). DOI:10.48550/arxiv.2304.09324.
[28] Liu H, Zheng Z, Qiao Y, et al. MathBench: Evaluating the theory and application proficiency of LLMS with a hierarchical mathematics benchmark[EB/OL]. (2024-05-20) [2024-12-01]. http://arxiv. org/abs/2405.12209.
[29] Fei Z, Shen X, Zhu D, et al. LawBench: Benchmarking legal knowledge of pretrained foundation models[J/OL]. (2023-09-28)[2024-12-01]. http://arxiv.org/abs/2309.16289.
[30] Chen J, Guo H, Yi K, et al. VisualGPT: Data-efficient adaptation of pretrained language models for image captioning[EB/OL]. (2022-03-30)[2024-10-17]. http://arxiv.org/abs/2102.10407.
[31] Zhang P, Dong X, Zang Y, et al. InternLM-xcomposer-2.5: A versatile large vision language model supporting long-contextual input and output[EB/OL]. (2024-07-03) [2024-10-16]. http://arxiv. org/abs/2407.03320.
[32] Hong W, Wang W, Ding M, et al. CogVLM2: Visual language models for image and video understanding[EB/OL]. (2024-08-29) [2024-10-17]. http://arxiv.org/abs/2408.16500.
[33] Chen Y, Qian S, Tang H, et al. LongLoRA: Efficient fine-tuning of long-context pretrained foundation models[EB/OL]. (2024-03-08)[2024-10-17]. http://arxiv.org/abs/2309.12307.
[34] Qian C, Liu W, Liu H, et al. ChatDev: Communicative agents for software development[EB/OL]. (2024-06-05) [2024-10-17]. http://arxiv.org/abs/2307.07924.
[35] Duan J, Yu S, Tan H L, et al. A survey of embodied AI: From simulators to research tasks[EB/OL]. (2022-01-05) [2024-10-16]. http://arxiv.org/abs/2103.04918. |