石油科技论坛 ›› 2024, Vol. 43 ›› Issue (6): 28-37.DOI: 10.3969/j.issn.1002-302X.2024.06.004

• 案例研究 • 上一篇    下一篇

测井人工智能应用场景及实现

石玉江,周军,李雄伟,张娟,陈义祥,李鹏飞,崔式涛   

  1. 中国石油集团测井有限公司
  • 出版日期:2024-12-31 发布日期:2025-01-24
  • 作者简介:石玉江,1971年生,2011年毕业于西北大学,博士,教授级高级工程师,现任中国石油集团测井有限公司总经理,主要从事测井技术应用、地质综合研究与管理工作。
  • 基金资助:
    中国石油集团测井有限公司科研项目“测井人工智能应用技术研究”(编号:F-D60023KQ)。

Scenario and Realization of Logging Artificial Intelligence Application

Shi Yujiang, Zhou Jun, Li Xiongwei, Zhang Juan, Chen Yixiang, Li Pengfei, Cui Shitao   

  1. China National Logging Corporation, Xi’an 710077, China
  • Online:2024-12-31 Published:2025-01-24

摘要: 测井作为油气勘探开发过程中的重要一环,面临勘探开发领域日趋复杂、数据问题突出、应用接口不统一、模型泛化性差、多维多尺度数据整合能力弱等挑战。中油测井在数智转型过程中,以建设“数智中油测井”为目标,围绕仪器装备智能研发全生命周期管理、生产作业智能操控全流程管控、测井数据智能解释一体化集成应用3条主线,加强人工智能与测井技术深度融合,打造支撑当前、引领未来的数智化能力,为油气勘探开发提供更可靠的技术支持。目前已在多个场景中实现人工智能应用且成效显著,未来将从仪器装备数字孪生应用、井下物联网、多维多尺度数据融合等方面持续着力发展人工智能技术。

关键词: 测井, 人工智能, 智能制造, 数字孪生, 智能解释

Abstract: Logging is an important link in oil an gas exploration and development. It faces a series of challenges, such as increasingly complicated exploration and development area, serious data problems, incompatible application interfaces, poor generalization of models and weak ability for integration of multi-dimension and multi-size data. In the intelligent and digital transition, China National Logging Corporation aimed at construction of “intelligent and digital CNLC” and focused on three main areas--instrument and equipment intelligent R&D life-cycle management, production and service intelligent control full-process management and integration of intelligent interpretation with logging data. The company enhanced in-depth integration of artificial intelligence with logging technology and strove to establish the intelligent and digital ability to support its business both at the present time and in the future,thus providing reliable technological support for oil and gas exploration and development. Currently, AI application has been realized in a number of scenarios with good results achieved. In the future, the efforts for sustainable development of AI technology will be concentrated on instrument and equipment digital twin application, downhole IOT and integration of multi-dimension and multi-size data.

Key words: logging, artificial intelligence, intelligent manufacture, digital twin, intelligent interpretation

中图分类号: