[1] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
Kuang Lichun, Liu He, Ren Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.
[2] 刘合. 油气勘探开发数字化转型 人工智能应用大势所趋[J]. 石油科技论坛, 2023, 42(3): 1-9, 47.
Liu He. Digital transformation of oil and gas exploration and development; unstoppable artificial intelligence application[J]. Petroleum Science and Technology Forum, 2023, 42 (3): 1-9, 47.
[3] 唐大麟. 人工智能赋能油气行业向高质量跃升: 访中国工程院院士刘合[J]. 中国石油企业, 2021(4): 24-27, 111.
Tang Dalin. Artificial intelligence empowers the oil and gas industry to develop towards high quality: Interview with Liu He, academician of China Engineering Academician[J]. China Petroleum Enterprise, 2021(4): 24-27, 111.
[4] 曾涛, 袁园. 国际油服公司数字化转型和智能化发展策略分析[J]. 国际石油经济, 2022, 30(7): 36-43.
Zeng Tao, Yuan Yuan. Analysis on digital transition and intelligent development of international oilfield service companies[J].International Petroleum Economics, 2022, 30(7): 36-43.
[5] 陈溯, 安鹏, 吴刚, 等. 海上智能油田建设研究[J]. 石油科技论坛,2020, 39(5): 16-23.
Chen Su, An Peng, Wu Gang, et al. Research on offshore intelligent oilfield construction[J]. Petroleum Science and Technology Forum,2020, 39(5): 16-23.
[6] 石玉江, 刘国强, 钟吉彬, 等. 基于大数据的测井智能解释系统开发与应用[J]. 中国石油勘探, 2021, 26(2): 113-126.
Shi Yujiang, Liu Guoqiang, Zhong Jibin, et al. Development and application of intelligent logging interpretation system based on big data[J]. China Petroleum Exploration, 2021, 26(2): 113-126.
[7] 谢晓辉, 安鹏. 中国海油人工智能建设探索与实践[J]. 石油科技论坛, 2023, 42(3): 22-29.
Xie Xiaohui, An Peng. Research and practice of CNOOC AI application[J]. Petroleum Science and Technology Forum, 2023,42(3):22-29.
[8] 黄玉峰, 马磊, 岳永军, 等. 浅谈智能机器人在石油勘探领域中的应用[J]. 物探装备, 2018, 28(5): 300-303.
Huang Yufeng, Ma Lei, Yue Yongjun, et al. The application of intelligent robot in oil and gas survey[J]. Equipment for Geophysical Prospecting, 2018, 28(5): 300-303.
[9] 邹文波. 人工智能研究现状及其在测井领域的应用[J]. 测井技术,2020, 44(4): 323-328.
Zou Wenbo. Artificial intelligence research status and applications in well logging[J]. Well Logging Technology, 2020, 44(4): 323-328.
[10] 王华, 张雨顺. 测井资料人工智能处理解释的现状及展望[J]. 测井技术, 2021, 45(4): 345-356.
Wang Hua, Zhang Yushun. Research status and prospect of artificial intelligence in logging data processing and interpretation[J]. Well Logging Technology, 2021, 45(4): 345-356.
[11] 张野, 李明超, 韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34(2): 333-342.
Zhang Ye, Li Mingchao, Han Shuai. Automatic identification and classification in lithology based on deep learning in rock images[J].Acta Petrologica Sinica, 2018,34(2): 333-342.
[12] 段友祥, 李根田, 孙歧峰. 卷积神经网络在储层预测中的应用研究[J]. 通信学报, 2016, 37(S1): 1-9.
Duan Youxiang, Li Gentian, Sun Qifeng. Research on convolutional neural network for reservoir parameter prediction [J]. Journal of Communications, 2016, 37(S1): 1-9.
[13] 郑宇哲, 叶朝辉, 刘西恩, 等. 基于深度学习的储层物性参数预测方法研究[J]. 电子世界, 2018(4): 23-26.
Zheng Yuzhe, Ye Chaohui, Liu Xi’en, et al. Research on prediction method of reservoir physical properties based on deep learning[J]. Electronics World, 2018(4): 23-26.
[14] 孙龙祥, 韩宏伟, 冯德永, 等. 基于人工智能的测井地层划分方法研究现状与展望[J]. 油气地质与采收率, 2023, 30(3): 49-58.
Sun Longxiang, Han Hongwei, Feng Deyong, et al. Research status and outlook of logging stratigraphic division methods based on artificial intelligence[J]. Petroleum Geology and Recovery Efficiency,2023, 30 (3): 49-58.
[15] 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4): 1-23.
Wu Qi, Liang Xing, Xian Chenggang, et al. Geoscience-to-production integration ensures effective and efficient south China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23.
[16] 曹宇. 人工智能在石油勘探中的应用[J]. 信息系统工程, 2022(5):56-59.
Cao Yu. Application of artificial intelligence in petroleum exploration[J]. China CIO News, 2022(5): 56-59.
[17] 王云波, 李铁. 智能制造发展过程的阶段及其特征[J]. 冶金自动化,2020, 44(5): 1-7, 55.
Wang Yunbo, Li Tie. Stages and characteristics of intelligent manufacturing development process[J]. Metallurgical Industry Automation, 2020, 44(5): 1-7, 55.
[18] 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15.
Tao Fei, Zhang He, Qi Qinglin, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021, 27(1): 1-15. |