[1] 新华社. 国务院印发《新一代人工智能发展规划》[EB/OL]. (2017-07-20)[2025-02-20]. https://www.gov.cn/xinwen/2017-07/20/content_5212064.htm.
Xinhua News Agency. The State Council of China issued the development planning for a new generation of artificial intelligence[EB/OL]. (2017-07-20) [2025-06-20]. https://www. gov. cn/xinwen/2017-07/20/content_5212064.htm.
[2] OpenAI. ChatGPT[EB/OL]. (2023-02-10) [2025-02-20]. http://openai.com/blog/chatgpt.
[3] 王闻萱, 王丹. 中国生成式人工智能DeepSeek 的核心特征、价值超越及未来路向[J]. 统一战线学研究, 2025, 9(2): 94-107.
Wang Wenxuan, Wang Dan. Critical characteristics, value surpasses and future direction of China’s generative artificial intelligence DeepSeek[J]. Journal of United Front Science, 2025, 9(2): 94-107.
[4] 周刚. ChatGPT: 人工智能新高地[J]. 金融会计, 2023(10): 73-78.
Zhou Gang. ChatGPT: New AI height[J]. Financial Accounting,2023(10): 73-78.
[5] 段鸿杰, 马承杰, 王振, 等. 胜利油田油气认知大模型建设与应用[J]. 石油科技论坛, 2024, 43(6): 46-55.
Duan Hongjie, Ma Chengjie, Wang Zhen, et al. Large language model of oil and gas cognition constructed and applied in Shengli Oilfield[J]. Petroleum Science and Technology Forum, 2024, 43(6):46-55.
[6] 陈瑜. AIGC 开辟油气智能化新路径[J]. 中国石油企业, 2023(5): 35.
Chen Yu. AIGC opens up new way of oil and gas intelligence[J].China Petroleum Enterprise, 2023(5): 35.
[7] 肖倚天, 孙旭东. 综合性AI 技术引领油气勘探智能化发展未来[J]. 中国石化, 2024(1): 46-50.
Xiao Yitian, Sun Xudong. Integrated AI technology leads future development of oil and gas exploration intelligence[J]. Sinopec Monthly, 2024(1): 46-50.
[8] 武魏楠. 油气行业智能化: 创新未来之路[J]. 能源, 2023(10):47-49.
Wu Weinan. Intelligence of oil and gas industry: Future way of creation[J]. Energy, 2023(10): 47-49.
[9] 杨金华, 李晓光, 孙乃达, 等. 未来10 年极具发展潜力的20 项油气勘探开发新技术[J]. 石油科技论坛, 2019, 38(1): 38-48.
Yang Jinhua, Li Xiaoguang, Sun Naida, et al. Twenty items of new technology for oil and gas exploration and development in next decade[J]. Petroleum Science and Technology Forum, 2019, 38(1):38-48.
[10] 中国石油新闻中心. 东方物探智能化地震作业系统为装备数智化赋能[EB/OL]. (2024-08-22)[2025-06-20]. http://news.cnpc.com.cn/system/2024/08/22/030140461.shtml.
CNPC News Center. BGP’s intelligent seismic service system empowers smart equipment[EB/OL]. (2024-08-22) [2025-02-20].http://news.cnpc.com.cn/system/2024/08/22/030140461.shtml.
[11] 中国新闻网. 充分发挥人工智能在油气勘探开发中的“超能力”[EB/OL]. (2025-03-24)[2025-06-20]. http://www.sinopecnews.com.cn/xnews/content/2025-03/24/content_7121831.html.
China News Network. Let AI play a role of “super ability” in oil and gas exploration and development[EB/OL]. (2025-03-24)[2025-04-20]. http://www.sinopecnews.com.cn/xnews/content/2025-03/24/content_7121831.html.
[12] 国家数据局. 数据标注优秀案例集之二十六|数据标注赋能油气勘探地物信息智能解译[EB/OL]. (2025-06-02)[2025-06-20]. https://www. nda. gov. cn/sjj/zhuanti/sjbz/0530/20250530194154456377229_pc.html.
National Data Bureau. No. 26 of excellent data annotation cases collection: Data annotation empowers intelligent interpretation of geophysical information about oil and gas exploration[EB/OL].(2025-06-02)[2025-04-20]. https://www.nda.gov.cn/sjj/zhuanti/sjbz/0530/20250530194154456377229pc.html.
[13] 赵改善. 石油物探数字化转型之路: 走向实时数据采集与自动化处理智能化解释时代[J]. 石油物探, 2021, 60(2): 175-189.
Zhao Gaishan. Digital transformation of petroleum geophysical exploration: Towards the era of real-time data acquisition,automatic processing, and intelligent interpretation[J]. Geophysical Prospecting for Petroleum, 2021, 60(2): 175-189.
[14] 李晓光, 吴潇. 从SEG年会看人工智能在地震数据处理与解释中的新进展[J]. 世界石油工业, 2020, 27(4): 27-35.
Li Xiaoguang, Wu Xiao. Progresses of artificial intelligence on seismic data processing and interpretation reviewed from SEG annual meetings[J]. World Petroleum Industry, 2020, 27(4): 27-35.
[15] 齐鹏, 杜杨杨. 物探院成功应用AI 地震处理技术[EB/OL]. (2024-07-10) [2025-06-20]. http://www. sinopecnews. com. cn/xnews/content/2024-07/10/content_7100189.html.
Qi Peng, Du Yangyang. Geophysical Research Institute successfully uses AI seismic processing technology[EB/OL]. (2024-07-10)[2025-04-20]. http://www. sinopecnews. com. cn/xnews/content/2024-07/10/content_7100189.html.
[16] 陈桂, 刘洋. 基于人工智能的断层自动识别研究进展[J]. 地球物理学进展, 2021, 36(1): 119-131.
Chen Gui, Liu Yang. Research progress of automatic fault recognition based on artificial intelligence[J]. Progress in Geophysics (in Chinese), 2021, 36(1): 119-131.
[17] 壳牌利用人工智能帮助从深水资源中寻找和生产更多的石油[EB/OL]. (2023-06-19) [2025-06-20]. http://www. hynyw. com/article/2079.html.
Shell searches and produces more oil from deepwater resources with help of AI[EB/OL]. (2023-06-19) [2025-04-20]. http://www.hynyw.com/article/2079.html.
[18] 李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4): 508-522.
Li Ning, Xu Binsen, Wu Hongliang, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica, 2021, 42(4): 508-522.
[19] 邹文波. 人工智能研究现状及其在测井领域的应用[J]. 测井技术, 2020, 44(4): 323-328.
Zou Wenbo. Artificial intelligence research status and applications in well logging[J]. Well Logging Technology, 2020, 44(4): 323-328.
[20] 辛文. 从央视网《中国神气局》,看华为云盘古大模型使能油气行业智能化实践[EB/OL]. (2024-03-20) [2025-07-02]. http://szjj.china.com.cn/2024-03/20/content_42730139.html.
Xin Wen.“ China Smart” from CCTV Network shows how Huawei Cloud Pangu Large Models makes oil and gas industry smart[EB/OL]. (2024-03-20) [2025-07-02]. http://szjj. china. com. cn/2024-03/20/content_42730139.html.
[21] 中国石油集团测井有限公司解释软件以“ 智”提效[EB/OL].(2023-11-10) [2025-07-02]. https://www. sxworker. com/xinwen/qy/2023-11-10/169919.html.
Interpretation software from China National Logging Corporation improves efficiency by means of AI[EB/OL]. (2023-11-10) [2025-07-02]. https://www. sxworker. com/xinwen/qy/2023-11-10/169919.html.
[22] 刘津彤, 杨宇涵.“ 慧眼如炬 洞若观火”: 智能测井解释时代来临![EB/OL]. (2022-07-09) [2025-07-02]. https://mp. weixin. qq. com/s?__biz=MzU3ODU1MjA1Mg== &mid=2247545740&idx=1&sn=66a1fc9cbe202850fced024b755ece56&chksm=fd71da17ca0653017b85cef4f06fbde79c4230629c74ecefc6267a310cb89635a40d3bc2639b&scene=27.
Liu Jintong, Yang Yuhan. Intelligent logging interpretation era is coming![EB/OL]. (2022-07-09)[2025-07-02]. https://mp.weixin.qq.com/s? __biz=MzU3ODU1MjA1Mg==&mid=2247545740&idx=
1&sn=66a1fc9cbe202850fced024b755ece56&chksm=fd71da17ca0653017b85cef4f06fbde79c4230629c74ecefc6267a310cb89635a40d3bc2639b&scene=27.
[23] 刘晶晶. 基于人工智能的致密砂岩优质储层预测[D]. 西安: 长安大学, 2022.
Liu Jingjing. Prediction of high-quality tight sandstone reservoirs based on artificial intelligence[D]. Xi’an: Chang’an University,2022.
[24] 刘合. 油气勘探开发数字化转型 人工智能应用大势所趋[J]. 石油科技论坛, 2023, 42(3): 1-9, 47.
Liu He. Digital transformation of oil and gas exploration and development; unstoppable AI application[J]. Petroleum Science and Technology Forum, 2023, 42(3): 1-9, 47.
[25] 杨明澔, 李小波, 刘兴邦, 等. 人工智能大模型在油气勘探开发领域的应用及挑战[J]. 石油科技论坛, 2024, 43(6): 107-113.
Yang Minghao, Li Xiaobo, Liu Xingbang, et al. Application of artificial intelligence pretrained foundation models in exploration and development and challenges in this area[J]. Petroleum Science and Technology Forum, 2024, 43(6): 107-113.
[26] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
Kuang Lichun, Liu He, Ren Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development,2021, 48(1): 1-11.
[27] 刘合. 石油勘探开发人工智能应用的展望[J]. 智能系统学报,2021, 16(6): 985.
Liu He. Prospect for AI application in oil exploration and development area[J]. CAAI Transactions on Intelligent Systems,2021, 16(6): 985.
[28] 石玉江, 周军, 李雄伟, 等. 测井人工智能应用场景及实现[J]. 石油科技论坛, 2024, 43(6): 28-37.
Shi Yujiang, Zhou Jun, Li Xiongwei, et al. Scenario and realization of logging artificial intelligence application[J]. Petroleum Science and Technology Forum, 2024, 43(6): 28-37.
[29] 李阳, 廉培庆, 薛兆杰, 等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 1-11.
Li Yang, Lian Peiqing, Xue Zhaojie, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum( Edition of Natural Science), 2020, 44(4): 1-11.
[30] 刘合, 任义丽, 李欣, 等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发, 2024, 51(4): 910-923.
Liu He, Ren Yili, Li Xin, et al. Research status and application of artificial intelligence large models in the oil and gas industry[J].Petroleum Exploration and Development, 2024, 51(4): 910-923. |