[1] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
Kuang Lichun, Liu He, Ren Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration & Development, 2021, 48(1):1-11.
[2] 聂晓炜. 基于多源数据融合的原油含水率在线修正技术研究与实现[J]. 国外电子测量技术, 2022, 41(4): 159-163.
Nie Xiaowei. Research and implementation of on-line correction technology for water cut of crude oil based on multi-source data fusion [J]. Foreign Electronic Measurement Technology, 2022, 41(4):159-163.
[3] 李剑峰. 企业数字化转型的本质内涵和实践路径[J]. 石油科技论坛,2020, 39(5): 1-8.
Li Jianfeng. Substantial connotation and practice path of corporate digitalized transformation[J]. Petroleum Science and Technology Forum, 2020, 39(5): 1-8.
[4] 刘合. 油气勘探开发数字化转型 人工智能应用大势所趋[J]. 石油科技论坛, 2023, 42(3): 1-9.
Liu He. Digital transformation of oil and gas exploration and development; unstoppable artificial intelligence application[J].Petroleum Science and Technology Forum, 2023, 42(3): 1-9.
[5] 刘合. 人工智能驱动油气行业高质量发展[J]. 石油科技论坛,2023, 42(3).
Liu He. AI drives the high-quality development of the oil and gas industry[J]. Petroleum Science and Technology Forum, 2023, 42(3).
[6] 李剑锋, 肖波, 等. 智能油田[M]. 北京: 中国石化出版社, 2020.
Li Jianfeng, Xiao bo, et al. Smart oilfield[M]. Beijing: China Petrochemical Press, 2020.
[7] 聂晓炜. 加快推动油气开发绿色低碳融合创新发展[J]. 中国环境监察, 2023, (9): 54-57.
Nie Xiaowei. Accelerating the green and low-carbon integrated innovative development of oil and gas development [J]. China Environmental Monitoring, 2023(9): 54-57.
[8] 聂晓炜. 智能油田关键技术研究现状与发展趋势[J]. 油气地质与采收率, 2022, 29(3): 68-79.
Nie Xiaowei. Research status and development trend of core technologies of intelligent oilfields[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 68-79.
[9] Defang Li. Perspective for Smart Factory in Petrochemical Industry[J].Computers & Chemical Engineering, 2016: 91(136-148).
[10] 刘博涵, 张贺, 董黎明. DevOps 中国调查研究. 软件学报, 2019, 30(10): 3206-3226.
Liu Bohan, Zhang He, Dong Liming. Survey on state of DevOps in China[J]. Journal of Software, 2019, 30(10): 3206-3226.
[11] 杜金虎, 时付更, 杨剑锋, 等. 中国石油上游业务信息化建设总体蓝图[J]. 中国石油勘探, 2020, 25(5): 1-8.
Du Jinhu, Shi Fugeng, Yang Jianfeng, et al. Overall blueprint of information construction of PetroChina upstream business[J]. China Petroleum Exploration, 2020, 25(5): 1-8.
[12] 陈溯, 安鹏, 吴刚, 等. 海上智能油田建设研究[J]. 石油科技论坛,2020, 39(5): 16-23.
Chen Su, An Peng, Wu Gang, et al. Research on offshore intelligent oilfield construction[J]. Petroleum Science and Technology Forum,2020, 39(5): 16-23.
[13] 乔泉熙, 蒋勇, 徐建军. 平台模式的智能气油田试点建设实践与成效[J]. 中国石油和化工标准与质量, 2022, 42(1): 137-139.
Qiao Quanxi, Jiang Yong, Xu Jianjun. Practice and effect of pilot construction of intelligent gas oilfield in platform mode[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(1): 137-139.
[14] 李剑锋. 中国石化数字化转型发展的路径与策略[J]. 中国石化, 2019(11): 67-70.
Li Jianfeng. Path and strategy for digital transformation and development in Sinopec[J]. Sinopec Monthly, 2019(11): 67-70.
[15] 易立, 司徒放, 杨浩然, 等. 云原生架构[R]. 阿里云计算有限公司,2022.
Yi Li, Situ Fang, Yang Haoran, et al. The cloud-native architecture[R]. Alibaba Cloud Computing Co. Ltd., 2022.
[16] 陈康, 郑纬民. 云计算: 系统实例与研究现状 [J]. 软件学报, 2009, 20(5): 1337-1348.
Chen Kang, Zheng Weimin. Cloud computing: System instances and current research[J]. Journal of Software, 2009, 20 (5): 1337-1348.
[17] 郭健. 基于DevOps的D公司软件项目管理改进研究[D]. 成都: 电子科技大学, 2019.
Guo Jian. Study on the improvement of software project management for D company on DevOps[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[18] 马涛, 张仲宏, 王铁成, 等. 勘探开发梦想云平台架构设计与实现[J].中国石油勘探, 2020, 25(5): 71-81.
Ma Tao, Zhang Zhonghong, Wang Tiecheng, et al. Architecture design and implementation of E&P Dream Cloud platform[J]. China Petroleum Exploration, 2020, 25(5): 71-81.
[19] 马承杰. 胜利油田“数据+平台+应用”信息化建设新模式构建与应用[J]. 石油科技论坛, 2021, 40(2): 73-80.
Ma Chengjie. Construction and application of new informatization model-“Data+Platform+Application”-at Shengli Oilfield[J]. Petroleum Science and Technology Forum, 2021, 40(2): 73-80.
[20] 李进, 肖宇, 杨晨. 基于云边协同的海洋石油设备预测性维修技术研究[J]. 北京石油化工学院学报, 2023, 31(3): 57-62.
Li Jin, Xiao Yu, Yang Chen. The research on collaborative predictive maintenance technology of offshore oil based on cloud computing and edge computing[J]. Journal of Beijing Institute of Petrochemical Technology, 2023, 31(3): 57-62.
[21] 苏春梅, 朱景义, 马建国, 等. 油气与新能源融合发展路径思考与建议[J]. 石油科技论坛, 2024, 43(1): 18-24, 49.
Su Chunmei, Zhu Jingyi, Ma Jianguo, et al. Thinking and suggestions on integrated development pathways for oil and gas with new energy[J]. Petroleum Science and Technology Forum, 2024, 43(1): 18-24.
[22] 李剑峰. 油气工业数字化智能化发展趋势[J]. 石油科技论坛, 2023,42(3): 10-21.
Li Jianfeng. Digital and intelligent development trend of oil and gas industry[J]. Petroleum Science and Technology Forum, 2023, 42(3):10-21. |