[1]戴厚良, 苏义脑, 刘吉臻, 等. 碳中和目标下我国能源发展战略思考[J]. 石油科技论坛, 2022, 41(1): 1-8.
Dai Houliang, Su Yinao, Liu Jizhen, et al. Thinking of China’s energy development strategy under carbon neutrality goal[J]. Petroleum Science and Technology Forum, 2022, 41(1): 1-8.
[2] 孙龙德, 陈艳鹏, 葛稚新, 等. 论中国油气行业上游绿色低碳转型与创新[J]. 国际石油经济, 2022, 30(10): 1-9.
Sun Longde, Chen Yanpeng, Ge Zhixin, et al. Upstream green and lowcarbon transformation and innovation of the oil and natural gas industry in China[J]. International Petroleum Economics, 2022, 30(10):1-9.
[3] 袁榴艳, 吴谋远, 段沛一, 等. 新形势下我国新能源行业发展特点与态势[J]. 石油科技论坛, 2023, 42(2): 82-89.
Yuan Liuyan,Wu Mouyuan, Duan Peiyi, et al. Characteristics and trend of China’s new energy industrial development under new situation[J].Petroleum Science and Technology Forum, 2023, 42(2): 82-89.
[4] 岳小文, 孔令峰, 刘秀如, 等. 石油公司油气与新能源融合发展路径与实践探索[J]. 石油科技论坛, 2023, 42(2): 75-81.
Yue Xiaowen, Kong Lingfeng, Liu Xiuru, et al. Path of oil and gas development in integration with new energy for oil companies and their practice[J]. Petroleum Science and Technology Forum, 2023,42(2): 75-81.
[5] Zhu Zhengxin, Jiang Taoli, Ali Mohsin, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22):16365-16910.
[6] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
Chen Haisheng, Liu Chang, Xu Yujie, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5):1477-1485.
[7] 邹才能, 等. 碳中和学[M]. 北京: 地质出版社, 2022.
Zou Caineng, et al. Carbon neutrality[M]. Beijing: Geological Publishing House, 2022.
[8] 葛稚新, 杨艳, 刘人和, 等. 储能产业与技术发展趋势及对石油公司的建议[J]. 石油科技论坛, 2020, 39(3): 67-74.
Ge Zhixin, Yang Yan, Liu Renhe, et al. Development trends for energystoring industry and technology and suggestions on petroleum companies[J]. Petroleum Science and Technology Forum, 2020, 39(3):67-74.
[9] 陈海生, 李泓, 徐玉杰, 等. 2022 年中国储能技术研究进展[J]. 储能科学与技术, 2023,12(5): 1516-1552.
Chen Haisheng, Li Hong, Xu Yujie, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552.
[10] Olabi A G, Onumaegbu C, Wilberforce T, et al. Critical review of energy storage systems[J]. Energy, 2021, 214: 118987.
[11] 中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2023[R]. 2023.
China Energy Research Society, China Energy Storage Alliance. White paper on energy storage industry research 2023[R]. 2023.
[12] 董显林, 范晓荣, 梁瑞虹. 深部油气勘探用高温压电陶瓷材料研制及产业化[J]. 科技促进发展, 2015(3): 360-364.
Dong Xianlin, Fan Xiaorong, Liang Ruihong. Research and industrialization of high temperature pizeo-electric ceramic materials for deep oil and gas exploration application[J]. Science & Technology for Development, 2015(3): 360-364.
[13] 王晓琦, 熊俐慧. 油气行业迎来储能技术攻关储备“黄金期”[R/OL].(2022-08-30) [2023-08-07]. http://news. cnpc. com. cn/system/2022/08/30/030078414.shtml.
Wang Xiaoqi, Xiong Lihui. The oil and gas industry ushers in the“golden period” of energy storage technology research and reserve[R/OL]. (2022-08-30)[2023-08-07]. http://news.cnpc.com.cn/system/2022/08/30/030078414.shtml.
[14] 计东东, 姜奇, 蒋龙, 等. 大容量长时储能技术及其在油气行业的应用前景[J]. 石油管材与仪器, 2023, 9(1): 6-15.
Ji Dongdong, Jiang Qi, Jiang Long, et al. High-capacity long-duration energy storage technologies and their application potential in oil and gas industry[J]. Petroleum Instruments, 2023, 9(1): 6-15.
[15] bp. BP installs first battery storage technology at U.S. wind energy site [EB/OL]. (2018-11-13) [2023-08-07]. https://www. bp. com/en_us/united-states/home/news/press-releases/bp-plans-for-significant-growth-indeepwater-gulf-of-mexico11.html.
[16] Shell. Supporting the energy transition through investments in Battery Energy Storage[EB/OL].(2023-04-05)[2023-08-07].https://shellenergy.com. au/energy-insights/supporting-the-energy-transition-through-investments-in-battery-energy-storage.
[17] TotalEnergies. TotalEnergies launches the largest battery-based energy storage site in France[EB/OL]. (2021-12-21) [2023-08-07]. https://totalenergies-com/media/news/press-releases/totalenergies-launcheslar-gest-battery-based-energy -storage-site-france.
[18] Jin X, Han Y, Zhang Z, et al. Mesoporous single-crystal lithium titanate enabling fast-charging Li-ion batteries[J]. Advances in Materials, 2022, 34(18): e2109356.
[19] Li Qing, Chen Ao, Wang Donghong, et al. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries[J]. Nature Communications, 2022, 13(1): 3699.
[20] Li Pei, Wang Yiqiao, Xiong Qi, et al. Manipulating coulombic efficiency of cathodes in aqueous zinc batteries by anion chemistry[J].Angewandte Chemie International Edition, 2023: e202303292.
[21] Liang Guojin, Zhu Jiaxiong, Yan Boxun, et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry[J]. Energy & Environmental Science, 2022, 15(3): 1086-1096.
[22] Wang Xiaoqi, Shao Pengpeng, Bai Shengchi, et al. Uniform longitudinal zinc growth beyond interface guided by anionic covalent organic framework for dendrite-Free aqueous zinc batteries[J].Batteries & Supercaps, 2023, 6(6): 287-288.
[23] Wang Xiaoqi, Hu Hong, Yang Shuo, et al. A UiO-66-NH2 MOF derived N doped porous carbon and ZrO2 composite cathode for zincion hybrid supercapacitors[J]. Inorganic Chemistry Frontiers, 2023,10(7): 2115-2124.
[24] Chen Shengmei, Ying Yiran, Wang Shengnan, et al. Solid interhalogen compounds with effective Br0 fixing for stable high-energy zincbatteries[J]. Angewandte Chemie (International ed.), 2023, 62(19):e202301467.
[25] Liang Guojin, Liang Bochun, Chen Ao, et al. Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction[J]. Nature Communications,2023, 14(1): 1856.
[26] Chen Ze, Cui Huilin, Hou Yue, et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries[J]. Chem, 2022, 8(8): 2204-2216.
[27] Xu Weiliang, Dang Rongbin, Zhou Lin, et al. Conversion of surface residual alkali to solid electrolyte to enable Na-ion full cells with robust interfaces[J]. Advanced Materials, 2023, 35, 2301314. |